If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+17x-201=0
a = 3; b = 17; c = -201;
Δ = b2-4ac
Δ = 172-4·3·(-201)
Δ = 2701
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{2701}}{2*3}=\frac{-17-\sqrt{2701}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{2701}}{2*3}=\frac{-17+\sqrt{2701}}{6} $
| 7n-15+n=12+15n-92 | | 2.25x-5+3x+8=19.5 | | 3x-6=-x-7 | | 256.41(x)+176.72(2X)=14020 | | 3/4x=103/8 | | A=2x^2+22x+326 | | -13=7-5u | | 28g^2+27g=10 | | 2x+2x+3x+1=90 | | 2x+2x(3x+1)=90 | | 2×(2x-4)=18 | | 7x+8=5-(7x-4) | | 5+6i=0 | | z^2-110z+16=0 | | 9^(4-3x)=3^-4x | | -7n(8n+6)=0 | | 2(m−10)=6 | | -14y=-15y+1 | | 2(5x+4)=15 | | 10=13/8+p | | 45=34+y | | 10-8z=-z4 | | 9x+5=9-(8x-8) | | 6=(3t+3)/5 | | W(4+w)=24 | | -3(7x-3)=-21x-9 | | 7/5+5m/8=91/40 | | -3x=37x+24 | | 44=4n+n | | 13g−11g=6 | | 20u=19u+10 | | 29+4y-2=14y-13-2y |